"It took scientists 10 years to map the human genome," Nelson said. "New technology enables us to search a child's entire genome in two weeks without testing the parents or other family members. It's a highly efficient way to quickly sample DNA and identify shared gene variations among people."

In the UCLA study, the research team identified a DNA sequence shared by all three infants from a single family. Like a signpost, it directed the scientists to a chromosomal location they suspected of housing the disease-causing gene.

"Each of us inherits different chromosomes from our mothers and fathers," explained Nelson. "If the child's genome contains the same DNA from both parents, we know that the mother and father are related in some way. They share a piece of ancestral DNA -- a common red flag for people known to have or carry a genetic disease."

After narrowing her search to three identical regions on the genome, Krakow zeroed in on one as the likely culprit. Her hunch proved correct. Not only did she identify the mutation in the initial family that lost three children, but she confirmed its presence in two other families whose infants also died of the disease.

Krakow and Nelson's next step will be to seek out other genes that contribute to short-rib polydactyly syndrome and uncover how these factors interact to cause the disorder.

"One of the reasons this disease is hard to crack is that it is caused by multiple genes, not just one," said Krakow. "We are searching for other gene variants in other families affected by the syndrome."

The DNA-scanning techniques developed by Nelson and his colleagues can be used to identify any hereditary disease-causing gene. The findings will enhance doctors' abilities to determine individual genes' specific roles and provide a more complete picture for healthy and abnormal human development.

Roughly 3 percent of all infants are born with birth defects. Some 5 percent of these children suffer from genetic defects affecting the skeleton. In this group, about 5 percent are short-rib polydactyly syndrome patients.




-- Click for more news in Tech Max >>

 

Editor:Yang Jie